Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 795
Filtrar
1.
Vet Comp Oncol ; 22(2): 204-216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38378135

RESUMO

Comparative cancer studies help us determine if discoveries in one species apply to another. Feline and human oral squamous cell carcinoma (FOSCC and HOSCC) are invasive tumours in which inflammation and abnormal p16 expression are reported. Immunohistochemistry was used to determine the expression of p16 and microsomal prostaglandin E2 synthase 1 (mPGES1) in 42 HOSCC and 45 FOSCC samples with known expression of cyclooxygenase 2 (COX2) and cluster of differentiation 147 (CD147). High p16 expression was more common in HOSCC tumour cells compared to adjacent stroma and oral epithelium (p < .05), with a similar but statistically nonsignificant pattern in FOSCC. Interestingly, high mPGES1 expression in FOSCC was more common in the adjacent epithelium compared to the other compartments (p < .05). In HOSCC, mPGES1 was more similar between compartments but was numerically more common in the tumour compartment (p > .05). There were nominal (p > 0.05) differences in marker expression between high and low mPGES1 expressing tumours in both species, including high p16 observed more commonly in high mPGES1 tumours, and COX-2 positive tumours being more common in low mPGES1 tumours. High CD147 HOSCC tumours were more common in the high mPGES1 HOSCC group (p < .05). In the FOSCC cohort, where there was no statistical difference in CD147 expression between high and low mPGES1 tumours, there were numerically higher CD147 cases in the high mPGES1group. Different expression patterns in FOSCC and HOSCC could be related to different risk factors. For example, p16 is a marker of papillomavirus-driven HOSCC, but a causal relationship between papillomaviruses and FOSCC has yet to be definitively demonstrated. The significance of high P16 expression in the absence of papillomavirus infection deserves further study, and the relative contributions of COX2 and mPGES1 to tumour inflammation and progression should be explored. The findings reveal potential similarities in FOSCC and HOSCC biology, while also demonstrating differences that may relate to risk factors and pathogenesis that are unique to each species.


Assuntos
Carcinoma de Células Escamosas , Doenças do Gato , Inibidor p16 de Quinase Dependente de Ciclina , Neoplasias Bucais , Prostaglandina-E Sintases , Gatos , Doenças do Gato/metabolismo , Doenças do Gato/patologia , Prostaglandina-E Sintases/metabolismo , Prostaglandina-E Sintases/genética , Animais , Neoplasias Bucais/veterinária , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/veterinária , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Humanos , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino
2.
Theriogenology ; 216: 146-154, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183931

RESUMO

Up to 50 % of dairy cows fail to resolve uterine involution and develop chronic clinical (CE) or subclinical endometritis (SE) 21 days after calving. Clinical endometritis is associated with purulent discharge, while SE is not associated with overt clinical signs. Along with numerous knowledge gaps related to its pathogenesis, SE does not allow for a straightforward and effective therapy. Therefore, it is crucial to unravel differences in the expression of genes among healthy, CE, and SE cows. This might contribute to the discovery of new drug candidates and, in consequence, a potentially effective treatment. In the present study, cows between 21 and 28 days postpartum (PP) were examined using vaginoscopy for the presence of vaginal discharge and endometrial cytology for the determination of the endometrial polymorphonuclear cell (PMN) percentage. Next, an endometrial biopsy sample was taken to investigate the expression of 13 selected candidate genes by qPCR. Uterine health status was assigned to healthy (absence of abnormal vaginal discharge and ≤5 % PMN, n = 13), SE (absence of abnormal vaginal discharge and >5 % PMN, n = 30), and CE (mucopurulent or purulent vaginal discharge and >5 % PMN, n = 9). At the same time, a blood sample was collected to assess serum progesterone concentration and to categorize cows as low (≤1 ng/mL) or high (>1 ng/mL) in progesterone. High expression of IL1B, IL6, IL17A, CXCL8, PTGES, PTGS1, PTGS2, and INHBA genes and low expression of FST was noted in the endometrium of CE compared to healthy cows. Increased endometrial INHBA expression was observed in both SE and CE compared to healthy cows. Interestingly, greater expression of PTGES and PRXL2B genes and lower expression of PTGS2 were characteristic of SE versus CE or healthy. Among cows with no overt clinical symptoms of uterine disease (healthy and SE), the endometrial expression of IL1 B, CXCL8, and PTGES was greater in cows with high versus low serum progesterone. Several genes were differentially expressed among healthy, SE, and CE cows indicating different pathways for the development of different uterine diseases. In conclusion, we found progesterone-independent SE markers, which suggests that low endometrial PTGS2 expression may be indicative of an inadequate immune response and thus contribute to the pathogenesis of SE.


Assuntos
Doenças dos Bovinos , Endometrite , Descarga Vaginal , Feminino , Bovinos , Animais , Endometrite/genética , Endometrite/veterinária , Endometrite/diagnóstico , Progesterona , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Endométrio/metabolismo , Período Pós-Parto , Prostaglandina-E Sintases/metabolismo , Descarga Vaginal/veterinária , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doenças dos Bovinos/diagnóstico
3.
Cancer Sci ; 115(2): 477-489, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081591

RESUMO

Inhibition of cholesterol de novo synthesis (DNS) by statins has controversial effects on the treatment of hepatocellular carcinoma (HCC). High fatty acid conditions have been reported to limit the effect of statins on metabolism diseases. Whether high fatty acid conditions interfere with the effect of statins on HCC remains unclear. Here, we reported that inhibiting cholesterol DNS with atorvastatin promoted the oncogenic capabilities of diethylnitrosamine (DEN) in mice fed high fatty acid diets (HFD). The combined analysis of metabolomics and transcriptomics revealed that arachidonic acid (AA) metabolism was the most significant changed pathway between mice with and without atorvastatin treatment. In vitro, in the presence of AA precursor linoleic acid (LA), atorvastatin promoted the proliferation and migration ability of HCC cell lines. However, in the absence of LA, these phenomena disappeared. TCGA and tissue microarray examination revealed that prostaglandin e synthase 2 (PTGES2), a key enzyme in AA metabolism, was associated with the poor outcome of HCC patients. Overexpression of PTGES2 promoted the proliferation and migration of HCC cell lines, and knockdown of PTGES2 inhibited the proliferation and migration of cells. Additionally, atorvastatin upregulated PTGES2 expression by enhancing Sterol-regulatory element binding protein 2 (SREBP2)-mediated transcription. Knockdown of PTGES2 reversed the proliferation and migration ability enhanced by atorvastatin. Overall, our study reveals that a high fatty acid background is one of the possible conditions limiting the application of statins in HCC, under which statins promote the progression of HCC by enhancing SREBP2-mediated PTGES2 transcription.


Assuntos
Carcinoma Hepatocelular , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ácidos Graxos/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ácido Araquidônico/farmacologia , Prostaglandina-E Sintases/genética , Atorvastatina/farmacologia , Linhagem Celular Tumoral , Colesterol , Proliferação de Células
4.
Mol Oncol ; 18(2): 317-335, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37519014

RESUMO

High-throughput drug screening enables the discovery of new anticancer drugs. Although monolayer cell cultures are commonly used for screening, their limited complexity and translational efficiency require alternative models. Three-dimensional cell cultures, such as multicellular tumor spheroids (MCTS), mimic tumor architecture and offer promising opportunities for drug discovery. In this study, we developed a neuroblastoma MCTS model for high-content drug screening. We also aimed to decipher the mechanisms underlying synergistic drug combinations in this disease model. Several agents from different therapeutic categories and with different mechanisms of action were tested alone or in combination with selective inhibition of prostaglandin E2 by pharmacological inhibition of microsomal prostaglandin E synthase-1 (mPGES-1). After a systematic investigation of the sensitivity of individual agents and the effects of pairwise combinations, GFP-transfected MCTS were used in a confirmatory screen to validate the hits. Finally, inhibitory effects on multidrug resistance proteins were examined. In summary, we demonstrate how MCTS-based high-throughput drug screening has the potential to uncover effective drug combinations and provide insights into the mechanism of synergy between an mPGES-1 inhibitor and chemotherapeutic agents.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neuroblastoma , Humanos , Prostaglandina-E Sintases , Esferoides Celulares , Neuroblastoma/tratamento farmacológico , Descoberta de Drogas/métodos
5.
Cell Death Dis ; 14(10): 710, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907523

RESUMO

Acute kidney injury (AKI) is a clinical syndrome with high morbidity and mortality but no specific therapy. Microsomal prostaglandin E synthase-2 (mPGES-2) is a PGE2 synthase but can metabolize PGH2 to malondialdehyde by forming a complex with heme. However, the role and mechanism of action of mPGES-2 in AKI remain unclear. To examine the role of mPGES-2, both global and tubule-specific mPGES-2-deficient mice were treated with cisplatin to induce AKI. mPGES-2 knockdown or overexpressing HK-2 cells were exposed to cisplatin to cause acute renal tubular cell injury. The mPGES-2 inhibitor SZ0232 was used to test the translational potential of targeting mPGES-2 in treating AKI. Additionally, mice were subjected to unilateral renal ischemia/reperfusion to further validate the effect of mPGES-2 on AKI. Interestingly, both genetic and pharmacological blockage of mPGES-2 led to decreased renal dysfunction and morphological damage induced by cisplatin and unilateral renal ischemia/reperfusion. Mechanistic exploration indicated that mPGES-2 deficiency inhibited ferroptosis via the heme-dependent regulation of the p53/SLC7A11/GPX4 axis. The present study indicates that mPGES-2 blockage may be a promising therapeutic strategy for AKI.


Assuntos
Injúria Renal Aguda , Ferroptose , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Cisplatino/efeitos adversos , Heme/metabolismo , Isquemia , Prostaglandina-E Sintases/metabolismo , Proteína Supressora de Tumor p53/genética
6.
Expert Opin Ther Targets ; 27(11): 1115-1123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015194

RESUMO

INTRODUCTION: Prostaglandin E2 (PGE2) is produced by cyclooxygenases (COX-1/2) and the microsomal prostaglandin E synthase 1 (mPGES-1). PGE2 is pro-inflammatory in diseases such as rheumatoid arthritis, cardiovascular disorders, and cancer. While Nonsteroidal anti-inflammatory drugs (NSAIDs) targeting COX can effectively reduce inflammation, their use is limited by gastrointestinal and cardiovascular side effects resulting from the blockade of all prostanoids. To overcome this limitation, selective inhibition of mPGES-1 is being explored as an alternative therapeutic strategy to inhibit PGE2 production while sparing or even upregulating other prostaglandins. However, the exact timing and location of PGH2 conversion to PGD2, PGI2, TXB2 or PGF2α, and whether it hinders or supports the therapeutic effect of mPGES-1 inhibition, is not fully understood. AREAS COVERED: The article briefly describes prostanoid history and metabolism with a strong focus on the vascular effects of prostanoids. Recent advances in mPGES-1 inhibitor development and results from pre-clinical and clinical studies are presented. Prostanoid shunting after mPGES-1 inhibition is highlighted and particularly discussed in the context of cardiovascular diseases. EXPERT OPINION: The newest research demonstrates that inhibition of mPGES-1 is a potent anti-inflammatory treatment strategy and beneficial and safer regarding cardiovascular side effects compared to NSAIDs. Inhibitors of mPGES-1 hold great potential to advance to the clinic and there are ongoing phase-II trials in endometriosis.


Assuntos
Anti-Inflamatórios , Prostaglandinas , Feminino , Humanos , Prostaglandina-E Sintases/metabolismo , Prostaglandinas/metabolismo , Anti-Inflamatórios/farmacologia , Dinoprostona/metabolismo , Anti-Inflamatórios não Esteroides/efeitos adversos , Ciclo-Oxigenase 2/metabolismo
7.
J Agric Food Chem ; 71(41): 15156-15169, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37800952

RESUMO

This study was aimed to investigate the therapeutic effect and mechanism of AKHO on 5-fluorouracil (5-FU)-induced intestinal mucositis in mice. Mouse body weight, diarrhea score, and H&E staining were applied to judge the therapeutic effect of AKHO. 16S rDNA and nontargeted metabolomics have been used to study the mechanism. WB, ELISA, and immunohistochemistry were adopted to validate possible mechanisms. The results demonstrated that AKHO significantly reduced diarrhea scores and intestinal damage induced by 5-FU in mice. AKHO lowered the serum levels of LD and DAO, and upregulated the expressions of ZO-1 and occludin in the ileum. Also, AKHO upregulated the abundance of Lactobacillus in the gut and suppressed KEGG pathways such as cortisol synthesis and secretion and arachidonic acid metabolism. Further validation studies indicated that AKHO downregulated the expressions of prostaglandin E2 (PGE2), microsomal prostaglandin E synthase-1 (mPGES-1), and PGE2 receptor EP4, as well as upregulated the expression of glucocorticoid (GC) receptor (GR), leading to improved intestinal epithelial barrier function. Taken together, AKHO elicited protective effects against 5-FU-induced mucositis by regulating the expressions of tight junction proteins via modulation of GC/GR and mPGES-1/PGE2/EP4 pathway, providing novel insights into the utilization and development of this pharmaceutical/food resource.


Assuntos
Alpinia , Microbioma Gastrointestinal , Mucosite , Óleos Voláteis , Camundongos , Animais , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Dinoprostona , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Óleos Voláteis/farmacologia , Fluoruracila/efeitos adversos , Diarreia
8.
Cancer Res Commun ; 3(7): 1397-1408, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37529399

RESUMO

The arachidonic acid pathway participates in immunosuppression in various types of cancer. Our previous observation detailed that microsomal prostaglandin E2 synthase 1 (mPGES-1), an enzyme downstream of cyclooxygenase 2 (COX-2), limited antitumor immunity in melanoma; in addition, genetic depletion of mPGES-1 specifically enhanced immune checkpoint blockade therapy. The current study set out to distinguish the roles of mPGES-1 from those of COX-2 in tumor immunity and determine the potential of mPGES-1 inhibitors for reinforcing immunotherapy in melanoma. Genetic deletion of mPGES-1 showed different profiles of prostaglandin metabolites from that of COX-2 deletion. In our syngeneic mouse model, mPGES-1-deficient cells exhibited similar tumorigenicity to that of COX-2-deficient cells, despite a lower ability to suppress PGE2 synthesis by mPGES-1 depletion, indicating the presence of factors other than PGE2 that are likely to regulate tumor immunity. RNA-sequencing analysis revealed that mPGES-1 depletion reduced the expressions of collagen-related genes, which have been found to be associated with immunosuppressive signatures. In our mouse model, collagen was reduced in mPGES-1-deficient tumors, and phenotypic analysis of tumor-infiltrating lymphocytes indicated that mPGES-1-deficient tumors had fewer TIM3+ exhausted CD8+ T cells compared with COX-2-deficient tumors. CAY10678, an mPGES-1 inhibitor, was equivalent to celecoxib, a selective COX-2 inhibitor, in reinforcing anti-PD-1 treatment. Our study indicates that mPGES-1 inhibitors represent a promising adjuvant for immunotherapies in melanoma by reducing collagen deposition and T-cell exhaustion. Significance: Collagen is a predominant component of the extracellular matrix that may influence the tumor immune microenvironment for cancer progression. We present here that mPGES-1 has specific roles in regulating tumor immunity, associated with several collagen-related genes and propose that pharmacologic inhibition of mPGES-1 may hold therapeutic promise for improving immune checkpoint-based therapies.


Assuntos
Oxirredutases Intramoleculares , Melanoma , Animais , Camundongos , Prostaglandina-E Sintases/genética , Oxirredutases Intramoleculares/genética , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Exaustão das Células T , Melanoma/tratamento farmacológico , Ciclo-Oxigenase 1 , Colágeno , Imunoterapia , Microambiente Tumoral
9.
Exp Biol Med (Maywood) ; 248(9): 811-819, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37515545

RESUMO

The cyclooxygenase (COX)/prostaglandin E2 (PGE2) signaling pathway has emerged as a critical target for anti-inflammatory therapeutic development in neurological diseases. However, medical use of COX inhibitors in the treatment of various neurological disorders has been limited due to well-documented cardiovascular and cerebrovascular complications. It has been widely proposed that modulation of downstream microsomal prostaglandin E synthase-1 (mPGES-1) enzyme may provide more specificity for inhibiting PGE2-elicited neuroinflammation. Heightened levels of mPGES-1 have been detected in a variety of brain diseases such as epilepsy, stroke, glioma, and neurodegenerative diseases. Subsequently, elevated levels of PGE2, the enzymatic product of mPGES-1, have been demonstrated to modulate a multitude of deleterious effects. In epilepsy, PGE2 participates in retrograde signaling to augment glutamate release at the synapse leading to neuronal death. The excitotoxic demise of neurons incites the activation of microglia, which can become overactive upon further stimulation by PGE2. A selective mPGES-1 inhibitor was able to reduce gliosis and the expression of proinflammatory cytokines in the hippocampus following status epilepticus. A similar mechanism has also been observed in stroke, where the overactivation of microglia by PGE2 upregulated the expression and secretion of proinflammatory cytokines. This intense activation of neuroinflammatory processes triggered the secondary injury commonly observed in stroke, and blockade of mPGES-1 reduced infarction size and edema, suppressed induction of proinflammatory cytokines, and improved post-stroke well-being and cognition. Furthermore, elevated levels of PGE2 have been shown to intensify the proliferation of glioma cells, mediate P-glycoprotein expression at the blood-brain barrier (BBB) and facilitate breakdown of the BBB. For these reasons, targeting mPGES-1, the central and inducible enzyme of the COX cascade, may provide a more specific therapeutic strategy for treating neuroinflammatory diseases.


Assuntos
Epilepsia , Glioma , Acidente Vascular Cerebral , Humanos , Prostaglandina-E Sintases/metabolismo , Doenças Neuroinflamatórias , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Epilepsia/tratamento farmacológico , Citocinas
10.
Biochem Cell Biol ; 101(6): 501-512, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37358009

RESUMO

Insensitivity and resistance to 5-fluorouracil (5FU) remain as major hurdles for effective and durable 5FU-based chemotherapy in colorectal cancer (CRC) patients. In this study, we identified prostaglandin E synthase (PTGES)/prostaglandin E2 (PGE2) axis as an important regulator for 5FU sensitivity in CRC cells. We found that PTGES expression and PGE2 production are elevated in CRC cells in comparison to normal colorectal epithelial cells. Depletion of PTGES significantly enhanced the inhibitory effect of 5FU on CRC cell viability that was fully reverted by exogenous supplement of PGE2. Inhibition of PTGES enzymatic function, by either inducing loss-of-function mutant or treatment with selective inhibitors, phenocopied the PTGES depletion in terms of 5FU sensitization. Mechanistically, PTGES/PGE2 axis modulates glycolysis in CRC cells, thereby regulating the 5FU sensitivity. Importantly, high PTGES expression is correlated with poor prognosis in 5FU-treated CRC patients. Thus, our study defines PTGES/PGE2 axis as a novel therapeutic target for enhancing the efficacy of 5FU-based chemotherapy in CRC.


Assuntos
Neoplasias Colorretais , Fluoruracila , Humanos , Fluoruracila/farmacologia , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Dinoprostona/uso terapêutico , Prostaglandina-E Sintases , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
11.
Vet Res Commun ; 47(3): 1721-1733, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37154859

RESUMO

Bovine in vitro endometrial models that resemble tissue function in vivo are needed to study infertility, long-term uterine alterations induced by pathogens and impact of endocrine disruptor chemicals on reproductive function and other reproductive system complications that cause high economic losses in livestock species. The present study aimed to generate an innovative, reproducible, and functional 3D scaffold-based model of the bovine endometrium structurally robust for long term-culture. We developed a multicellular model containing both endometrial epithelial and stromal cells. Epithelial cells organized to form a luminal-like epithelial layer on the surface of the scaffold. Stromal cells produced their own extracellular matrix forming a stable subepithelial compartment that physiologically resembles the normal endometrium. Both cell types released prostaglandin E2 and prostaglandin F2α following a treatment with oxytocin and arachidonic acid. Additionally signal pathways mediating oxytocin and arachidonic acid stimulation of prostaglandin synthesis were analyzed by real time PCR (RT-PCR). Oxytocin receptor (OXTR), prostaglandin E2 receptor 2 (EP2), prostaglandin E2 receptor 4 (EP4), prostaglandin F receptor (PTGFR), prostaglandin E synthase (PTGES), PGF-synthase (PGFS) and prostaglandin-endoperoxide synthase 2 (COX-2) expression was detected in both control and treatment groups, however, only significant changes in abundance of OXTR mRNA transcripts were found. The results obtained by this study are a step forward in bovine in vitro culture technology. This 3D scaffold-based model provides a platform to study regulatory mechanisms involved in endometrial physiology and can set the basis for a broader tool for designing and testing novel therapeutic strategies for recurrent uterine pathologies.


Assuntos
Endométrio , Ocitocina , Feminino , Animais , Bovinos , Ocitocina/farmacologia , Ocitocina/metabolismo , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo , Dinoprostona/metabolismo , Prostaglandina-E Sintases/metabolismo
12.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37108468

RESUMO

Metabolic reprogramming is an established hallmark of multiple cancers, including pancreatic cancer. Dysregulated metabolism is utilized by cancer cells for tumor progression, metastasis, immune microenvironment remodeling, and therapeutic resistance. Prostaglandin metabolites have been shown to be critical for inflammation and tumorigenesis. While the functional role of prostaglandin E2 metabolite has been extensively studied, there is a limited understanding of the PTGES enzyme in pancreatic cancer. Here, we investigated the relationship between expression of prostaglandin E synthase (PTGES) isoforms and the pathogenesis and regulation of pancreatic cancer. Our analysis identified higher expression of PTGES in pancreatic tumors compared to normal pancreatic tissues, suggesting an oncogenic function. Only PTGES1 expression was significantly correlated with worse prognosis of pancreatic cancer patients. Further, utilizing cancer genome atlas data, PTGES was found to be positively correlated with epithelial-mesenchymal transition, metabolic pathways, mucin oncogenic proteins, and immune pathways in cancer cells. PTGES expression was also correlated with higher mutational burden in key driver genes, such as TP53 and KRAS. Furthermore, our analysis indicated that the oncogenic pathway controlled by PTGES1 could be regulated via DNA methylation-dependent epigenetic mechanisms. Notably, the glycolysis pathway was positively correlated with PTGES and may fuel cancer cell growth. PTGES expression was also associated with downregulation of the MHC pathway and negatively correlated with CD8+ T cell activation markers. In summary, our study established an association of PTGES expression with pancreatic cancer metabolism and the immune microenvironment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Prostaglandina-E Sintases , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Prostaglandinas , Microambiente Tumoral/genética , Neoplasias Pancreáticas
13.
J Neuroinflammation ; 20(1): 99, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118736

RESUMO

BACKGROUND: Pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates serine (S) 10 site on neurofibromin 2 (NF2, also known as merlin (moesin-ezrin-radixin-like protein) or schwannomin). p21-activated kinase 1 (PAK1) is a serine/threonine protein kinase, which is involved in synaptic activity and plasticity in neurons. NF2 and PAK1 reciprocally regulate each other in a positive feedback manner. Thus, the aim of the present study is to investigate the effects of PLPP/CIN-mediated NF2 S10 dephosphorylation on PAK1-related signaling pathways under physiological and neuroinflammatory conditions, which are largely unknown. METHODS: After kainate (KA) injection in wild-type, PLPP/CIN-/- and PLPP/CINTg mice, seizure susceptibility, PAK1 S204 autophosphorylation, nuclear factor-κB (NF-κB) p65 S276 phosphorylation, cyclooxygenase-2 (COX-2) upregulation, prostaglandin E synthase 2 (PTGES2) induction and neuronal damage were measured. The effects of 1,1'-dithiodi-2-naphthtol (IPA-3, a selective inhibitor of PAK1) pretreatment on these responses to KA were also validated. RESULTS: PLPP/CIN overexpression increased PAK1 S204 autophosphorylation concomitant with the enhanced NF2 S10 dephosphorylation in hippocampal neurons under physiological condition. Following KA treatment, PLPP/CIN overexpression delayed the seizure on-set and accelerated PAK1 S204 phosphorylation, NF-κB p65 S276 phosphorylation, COX-2 upregulation and PTGES2 induction, which were ameliorated by PLPP/CIN deletion or IPA-3. Furthermore, IPA-3 pretreatment shortened the latency of seizure on-set without affecting seizure severity (intensity) and ameliorated CA3 neuronal death induced by KA. CONCLUSIONS: These findings indicate that PLPP/CIN may regulate seizure susceptibility (the latency of seizure on-set) and CA3 neuronal death in response to KA through NF2-PAK1-NF-κB-COX-2-PTGES2 signaling pathway.


Assuntos
NF-kappa B , Neurofibromina 2 , Camundongos , Animais , NF-kappa B/metabolismo , Neurofibromina 2/metabolismo , Neurofibromina 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Quinases Ativadas por p21/metabolismo , Ácido Caínico/toxicidade , Prostaglandina-E Sintases/metabolismo , Fosfatos , Transdução de Sinais , Convulsões/induzido quimicamente , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação
14.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769370

RESUMO

Nonalcoholic fatty liver disease (NAFLD) affects a substantial proportion of the general population and is even more prevalent in obese and diabetic patients. NAFLD, and particularly the more advanced manifestation of the disease, nonalcoholic steatohepatitis (NASH), increases the risk for both liver-related and cardiovascular morbidity. The pathogenesis of NAFLD is complex and multifactorial, with many molecular pathways implicated. Emerging data suggest that microsomal prostaglandin E synthase-1 and -2 might participate in the development and progression of NAFLD. It also appears that targeting these enzymes might represent a novel therapeutic approach for NAFLD. In the present review, we discuss the association between microsomal prostaglandin E synthase-1 and -2 and NAFLD.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Prostaglandina-E Sintases/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo
15.
Comput Biol Med ; 155: 106616, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36780799

RESUMO

Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase expressed following exposure to pro-inflammatory stimuli. The mPGES-1 enzyme represents a new target for the therapeutic treatment of acute and chronic inflammatory disorders and cancer. In the present study, compounds from the ZINC15 database with an indole scaffold were docked at the mPGES-1 binding site using Glide (high-throughput virtual screening [HTVS], standard precision [SP] and extra precision [XP]), and the stabilities of the complexes were determined by molecular simulation studies. Following HTVS, the top 10% compounds were retained and further screened by SP. Again, the top 10% of these compounds were retained. Finally, the Glide XP scores of the compounds were determined, 20% were analyzed, and the Prime MM-GBSA total free binding energies of the compounds were calculated. The molecular simulations (100 ns) of the reference ligand, LVJ, and the two best-scoring compounds were performed with the Desmond program to analyze the dynamics of the target protein-ligand complexes. In human lung cells treated with the hit compounds, cell viability by colorimetric method and PGE2 levels by immunoassay method were determined. These in vitro experiments demonstrated that the two indole-containing hit compounds are potential novel inhibitors of mPGES-1 and are, therefore, potential therapeutic agents for cancer/inflammation therapies. Moreover, the compounds are promising lead mPGES-1 inhibitors for novel molecule design.


Assuntos
Bioensaio , Inflamação , Humanos , Prostaglandina-E Sintases/metabolismo , Ligantes , Sítios de Ligação , Inibidores Enzimáticos/farmacologia
16.
Inflammation ; 46(3): 893-911, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36598592

RESUMO

Inflammation is a hallmark in severe diseases such as atherosclerosis and non-alcohol-induced steatohepatitis (NASH). In the development of inflammation, prostaglandins, especially prostaglandin E2 (PGE2), are major players alongside with chemo- and cytokines, like tumor-necrosis-factor alpha (TNFα) and interleukin-1 beta (IL-1ß). During inflammation, PGE2 synthesis can be increased by the transcriptional induction of the two key enzymes: cyclooxygenase 2 (COX-2), which converts arachidonic acid to PGH2, and microsomal prostaglandin E2 synthase 1 (mPGES-1), which synthesizes PGE2 from PGH2. Both COX-2 and mPGES-2 were induced by a dietary intervention where mice were fed a fatty acid-rich and, more importantly, cholesterol-rich diet, leading to the development of NASH. Since macrophages are the main source of PGE2 synthesis and cholesterol is predominantly transported as LDL, the regulation of COX-2 and mPGES-1 expression by native LDL was analyzed in human macrophage cell lines. THP-1 and U937 monocytes were differentiated into macrophages, through which TNFα and PGE-2 induced COX-2 and mPGES-1 expression by LDL could be analyzed on both mRNA and protein levels. In addition, the interaction of LDL- and EP receptor signal chains in COX-2/mPGES-1 expression and PGE2-synthesis were analyzed in more detail using EP receptor specific agonists. Furthermore, the LDL-mediated signal transduction in THP-1 macrophages was analyzed by measuring ERK and Akt phosphorylation as well as transcriptional regulation of transcription factor Egr-1. COX-2 and mPGES-1 were induced in both THP-1 and U937 macrophages by the combination of TNFα and PGE2. Surprisingly, LDL dose-dependently increased the expression of mPGES-1 but repressed the expression of COX-2 on mRNA and protein levels in both cell lines. The interaction of LDL and PGE2 signal chains in mPGES-1 induction as well as PGE2-synthesis could be mimicked by through simultaneous stimulation with EP2 and EP4 agonists. In THP-1 macrophages, LDL induced Akt-phosphorylation, which could be blocked by a PI3 kinase inhibitor. Alongside blocking Akt-phosphorylation, the PI3K inhibitor inhibited LDL-mediated mPGES-1 induction; however, it did not attenuate the repression of COX-2 expression. LDL repressed basal ERK phosphorylation and expression of downstream transcription factor Egr-1, which might lead to inhibition of COX-2 expression. These findings suggest that simultaneous stimulation with a combination of TNFα, PGE2, and native LDL-activated signal chains in macrophage cell lines leads to maximal mPGES-1 activity, as well repression of COX-2 expression, by activating PI3K as well as repression of ERK/Egr-1 signal chains.


Assuntos
Dinoprostona , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Ciclo-Oxigenase 2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Macrófagos/metabolismo , Linhagem Celular , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Ciclo-Oxigenase 1/metabolismo , Prostaglandina H2/metabolismo , Fatores de Transcrição/metabolismo , RNA Mensageiro/metabolismo
17.
FEBS J ; 290(2): 533-549, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36031392

RESUMO

Prostaglandin E2 (PGE2) is one of the most abundant prostaglandins and has been implicated in various diseases. Here, we aimed to explore the role of the PGE2 pathway in mediating ferroptosis during acute kidney injury. When renal tubular epithelial cells stimulated by H2 O2 , the contents of glutathione (GSH) and glutathione peroxidase 4 (GPX4) decreased, whereas the level of lipid peroxide increased. Ferrostatin-1 can effectively attenuate these changes. In this process, the expression levels of cyclooxygenase (COX)-1 and COX-2 were up-regulated. Meanwhile, the expression of microsomal prostaglandin E synthase-2 was elevated, whereas the expression of microsomal prostaglandin E synthase-1 and cytosolic prostaglandin E synthase were down-regulated. Furthermore, the expression of 15-hydroxyprostaglandin dehydrogenase decreased. An excessive accumulation of PGE2 promoted ferroptosis, whereas the PGE2 inhibitor pranoprofen minimized the changes for COX-2, GSH, GPX4 and lipid peroxides. A decrease in the levels of the PGE2 receptor E-series of prostaglandin 1/3 partially restored the decline of GSH and GPX4 levels and inhibited the aggravation of lipid peroxide. Consistent with the in vitro results, increased PGE2 levels led to increased levels of 3,4-methylenedioxyamphetamine, Fe2+ accumulation and decreased GSH and GPX4 levels during renal ischaemia/reperfusion injury injury in mice. Our results indicate that the PGE2 pathway mediated oxidative stress-induced ferroptosis in renal tubular epithelial cells.


Assuntos
Dinoprostona , Ferroptose , Camundongos , Animais , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Ferroptose/genética , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Peróxidos Lipídicos/farmacologia , Estresse Oxidativo , Células Epiteliais/metabolismo
18.
Cardiovasc Res ; 119(5): 1218-1233, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-35986688

RESUMO

AIMS: Microsomal prostaglandin E synthase-1 (mPGES-1)/prostaglandin E2 (PGE2) induces angiogenesis through the prostaglandin E2 receptor (EP1-4). Among immune cells, regulatory T cells (Tregs), which inhibit immune responses, have been implicated in angiogenesis, and PGE2 is known to modulate the function and differentiation of Tregs. We hypothesized that mPGES-1/PGE2-EP signalling could contribute to recovery from ischaemic conditions by promoting the accumulation of Tregs. METHODS AND RESULTS: Wild-type (WT), mPGES-1-deficient (mPges-1-/-), and EP4 receptor-deficient (Ep4-/-) male mice, 6-8 weeks old, were used. Hindlimb ischaemia was induced by femoral artery ligation. Recovery from ischaemia was suppressed in mPges-1-/- mice and compared with WT mice. The number of accumulated forkhead box protein P3 (FoxP3)+ cells in ischaemic muscle tissue was decreased in mPges-1-/- mice compared with that in WT mice. Expression levels of transforming growth factor-ß (TGF-ß) and stromal cell derived factor-1 (SDF-1) in ischaemic tissue were also suppressed in mPges-1-/- mice. The number of accumulated FoxP3+ cells and blood flow recovery were suppressed when Tregs were depleted by injecting antibody against folate receptor 4 in WT mice but not in mPges-1-/- mice. Recovery from ischaemia was significantly suppressed in Ep4-/- mice compared with that in WT mice. Furthermore, mRNA levels of Foxp3 and Tgf-ß were suppressed in Ep4-/- mice. Moreover, the number of accumulated FoxP3+ cells in ischaemic tissue was diminished in Ep4-/- mice compared with that in Ep4+/+ mice. CONCLUSION: These findings suggested that mPGES-1/PGE2 induced neovascularization from ischaemia via EP4 by promoting the accumulation of Tregs. Highly selective EP4 agonists could be useful for the treatment of peripheral artery disease.


Assuntos
Dinoprostona , Linfócitos T Reguladores , Camundongos , Masculino , Animais , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Linfócitos T Reguladores/metabolismo , Camundongos Knockout , Isquemia/genética , Fator de Crescimento Transformador beta , Fatores de Transcrição Forkhead/genética
19.
J Allergy Clin Immunol ; 151(2): 310-313, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36126795

RESUMO

Aspirin-exacerbated respiratory disease (AERD) is associated with overproduction of proinflammatory cysteinyl leukotrienes (CysLTs), defective generation of anti-inflammatory prostaglandin E2 (PGE2), and reduced expression of the EP2 receptor for PGE2. Reduced PGE2 synthesis results from the downregulation of inducible COX-2. Because PGE2 signaling via EP2 inhibits the 5-lipoxygenase/leukotriene C4 synthase-dependent pathway, the deficient levels of both PGE2 and EP2 likely contribute to the excessive baseline production of cysteinyl leukotrienes in patients with AERD compared with in patients with aspirin-tolerant asthma. The COX-2 pathway is regulated by an autocrine metabolic loop involving IL-1ß, IL-1 receptor type I, EP2, COX-2, membrane-bound PGE2 prostaglandin E2 synthase-1, and PGE2. Previous studies reported that this metabolic loop is dysregulated in patients with AERD. When the downexpressed EP2 receptor is normalized, the entire loop returns to its normal function. Cotreatment of airway cells from healthy subjects with IL-4 and IFN-γ induces alterations in the metabolic loop similar to those seen in patients with AERD. In these patients, IL-4, which is produced in excess in airways of patients with AERD, likely contributes to the alteration of normal functioning of the autocrine metabolic loop involving IL-1ß, IL-1 receptor type I, EP2, COX-2, membrane-bound PGE2 prostaglandin E2 synthase-1, and PGE2. We hypothesized that by blocking IL-4 action, dupilumab normalizes EP2 expression and restores the normal functioning of the COX-2 pathway autocrine metabolic loop, thereby normalizing the synthesis of PGE2 and restoring aspirin tolerance.


Assuntos
Asma Induzida por Aspirina , Asma , Humanos , Aspirina/farmacologia , Aspirina/uso terapêutico , Ciclo-Oxigenase 2 , Interleucina-4 , Asma Induzida por Aspirina/tratamento farmacológico , Asma Induzida por Aspirina/metabolismo , Leucotrienos , Dinoprostona/metabolismo , Asma/tratamento farmacológico , Prostaglandina-E Sintases/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Interleucina-1
20.
J Lipid Res ; 63(12): 100310, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370807

RESUMO

Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) results in decreased production of proinflammatory PGE2 and can lead to shunting of PGH2 into the prostaglandin D2 (PGD2)/15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) pathway. 15dPGJ2 forms Michael adducts with thiol-containing biomolecules such as GSH or cysteine residues on target proteins and is thought to promote resolution of inflammation. We aimed to elucidate the biosynthesis and metabolism of 15dPGJ2 via conjugation with GSH, to form 15dPGJ2-glutathione (15dPGJ2-GS) and 15dPGJ2-cysteine (15dPGJ2-Cys) conjugates and to characterize the effects of mPGES-1 inhibition on the PGD2/15dPGJ2 pathway in mouse and human immune cells. Our results demonstrate the formation of PGD2, 15dPGJ2, 15dPGJ2-GS, and 15dPGJ2-Cys in RAW264.7 cells after lipopolysaccharide stimulation. Moreover, 15dPGJ2-Cys was found in lipopolysaccharide-activated primary murine macrophages as well as in human mast cells following stimulation of the IgE-receptor. Our results also suggest that the microsomal glutathione S-transferase 3 is essential for the formation of 15dPGJ2 conjugates. In contrast to inhibition of cyclooxygenase, which leads to blockage of the PGD2/15dPGJ2 pathway, we found that inhibition of mPGES-1 preserves PGD2 and its metabolites. Collectively, this study highlights the formation of 15dPGJ2-GS and 15dPGJ2-Cys in mouse and human immune cells, the involvement of microsomal glutathione S-transferase 3 in their biosynthesis, and their unchanged formation following inhibition of mPGES-1. The results encourage further research on their roles as bioactive lipid mediators.


Assuntos
Cisteína , Prostaglandinas , Camundongos , Humanos , Animais , Lipopolissacarídeos/metabolismo , Mastócitos , Prostaglandina-E Sintases/metabolismo , Macrófagos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Prostaglandina D2/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA